Genome Evolution in Plant Pathogenic and Symbiotic Fungi
نویسندگان
چکیده
منابع مشابه
Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi
Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi ap...
متن کاملTransient Hypermutagenesis Accelerates the Evolution of Legume Endosymbionts following Horizontal Gene Transfer
Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evol...
متن کاملComparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome ...
متن کاملNutrient transfer to plants by phylogenetically diverse fungi suggests convergent evolutionary strategies in rhizospheric symbionts
Most land plants are able to form symbiotic associations with fungi, and in many cases these associations are necessary for plant and fungal survival. These plant/fungal associations are formed with mycorrhizal (arbuscular mycorrhizal or ectomycorrhizal) or endophytic fungi, fungi from distinct phylogenetic lineages. While it has been shown that mycorrhizal fungi are able to transfer nutrients ...
متن کاملEvolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens.
Glycosyl hydrolase family 28 (GH28) is a set of structurally related enzymes that hydrolyze glycosidic bonds in pectin, and are important extracellular enzymes for both pathogenic and saprotrophic fungi. Yet, very little is understood about the evolutionary forces driving the diversification of GH28s in fungal genomes. We reconstructed the evolutionary history of family GH28 in fungi by examini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008